

Welcome to PLSA’s documentation!

Contents:

	plsa.preprocessors module

	plsa.pipeline module

	plsa.corpus module

	plsa.algorithms package
	Submodules

	plsa.visualize module

Indices and tables

	Index

	Module Index

	Search Page

plsa.preprocessors module

Preprocessors for documents and words.

These preprocessors come in three flavours (functions, closures that return
functions, and classes defining callable objects). The choice for the respective
flavour is motivated by the complexity of the preprocessor. If it doesn’t need
any parameters, a simple function will do. If it is simple, does not need to be
manipulated interactively, but needs some parameter(s), then a closure is fine.
If it would be convenient to alter parameters of the preprocessor interactively,
then a class is a good choice.

Preprocessors act either on an entire document string or, after splitting
documents into individual words, on an iterable over the words contained in a
single document. Therefore, they cannot be combined in arbitrary order but
care must be taken to ensure that the return value of one matches the
call signature of the next.

	
plsa.preprocessors.remove_non_ascii(doc: str) → str

	Removes non-ASCII characters (i.e., with unicode > 127) from a string.

	Parameters

	doc (str) – A document given as a single string.

	Returns

	The document as a single string with all characters of unicode > 127
removed.

	Return type

	str

	
plsa.preprocessors.to_lower(doc: str) → str

	Converts a string to all-lowercase.

	Parameters

	doc (str) – A document given as a single string.

	Returns

	The document as a single string with all characters
converted to lowercase.

	Return type

	str

	
plsa.preprocessors.remove_numbers(doc: str) → str

	Removes digit/number characters from a string.

	Parameters

	doc (str) – A document given as a single string.

	Returns

	The document as a single string with all number/digit characters
removed.

	Return type

	str

	
plsa.preprocessors.remove_tags(exclude_regex: str) → Callable[[str], str]

	Returns callable that removes matches to the given regular expression.

	Parameters

	exclude_regex (str) – A regular expression specifying specific patterns to remove from a
document.

	Returns

	A callable that removes patterns matching the given regular expression
from a string.

	Return type

	function

	
plsa.preprocessors.remove_punctuation(punctuation: Iterable[str]) → Callable[[str], str]

	Returns callable that removes punctuation characters from a string.”

	Parameters

	punctuation (iterable of str) – An iterable over single-character strings specifying punctuation
characters to remove from a document.

	Returns

	A callable that removes the given punctuation characters from a string.

	Return type

	function

	
plsa.preprocessors.tokenize(doc: str) → Tuple[str, ...]

	Splits a string into individual words.

	Parameters

	doc (str) – A document given as a single string.

	Returns

	The document as tuple of individual words.

	Return type

	tuple of str

	
class plsa.preprocessors.RemoveStopwords(stopwords: Union[str, Iterable[str]])

	Bases: object

Instantiate callable objects that remove stopwords from a document.

	Parameters

	stopwords (str or iterable of str) – Stopword(s) to remove from a document given as an iterable
over words.

Examples

>>> from plsa.preprocessors import RemoveStopwords
>>> remover = RemoveStopwords('is')
>>> remover.words
('is',)

>>> remover.words = 'the', 'are'
>>> remover.words
('the', 'are')

>>> remover += 'is', 'we'
>>> remover.words
('is', 'we', 'the', 'are')

>>> new_instance = remover + 'do'
>>> new_instance.words
('are', 'we', 'is', 'do', 'the')

	
words

	The current stopwords.

	
class plsa.preprocessors.LemmatizeWords(*incl_pos)

	Bases: object

Instantiate callable objects that find the root form of words.

	Parameters

	*inc_pos (str) – One or more positional tag(s) indicating the type(s) of words to retain
and to find the root form of. Must be one of ‘JJ’ (adjectives), ‘NN’
(nouns), ‘VB’ (verbs), or ‘RB’ (adverbs).

	Raises

	KeyError – If the given positional tags are not among the list of allowed ones.

Examples

>>> from plsa.preprocessors import LemmatizeWords
>>> lemmatizer = LemmatizeWords('VB')
>>> lemmatizer.types
('VB',)

>>> lemmatizer.types = 'jj', 'nn'
>>> lemmatizer.types
('JJ', 'NN')

>>> lemmatizer += 'VB', 'NN'
>>> lemmatizer.types
('JJ', 'NN', 'VB')

>>> new_instance = lemmatizer + 'RB'
>>> new_instance.types
('JJ', 'RB', 'NN', 'VB')

	
types

	The current type(s) of words to retain.

	
plsa.preprocessors.remove_short_words(min_word_len: int) → Callable[[Iterable[str]], Tuple[str, ...]]

	Returns a callable that removes short words from an iterable of strings.

	Parameters

	min_word_len (int) – Minimum number of characters in a word for it to be retained.

	Returns

	A callable that removes words shorter than the given threshold from
an iterable over strings.

	Return type

	function

plsa.pipeline module

	
class plsa.pipeline.Pipeline(*preprocessors)

	Bases: object

Encapsulates and applies multiple document preprocessors.

Each preprocessor is assumed to be a callable that takes a single document
as input and produces a single document as output. Importantly, each
document fed to the first preprocessor in the chain is delivered as a
single string, while the last preprocessor is required to return it
as an iterable over strings with each element representing one word
of that document.

Other than that, preprocessors can be combined in any which way, provided
that the return value of one matches the call signature of the next. The
order in which they are applied is the order in which they are specified,
i.e., from left to right.

	Parameters

	*preprocessors (callable) – Function(s) or other callable object(s) that each take a single
document as input and produce a (processed) document as output.

See also

plsa.preprocessors

	
process(doc: str) → Tuple[str, ...]

	Applies a chain of one or more preprocessors to a document.

	Parameters

	doc (str) – A text document given as a single string.

	Returns

	Each element represents one word of the document.

	Return type

	tuple of str

plsa.corpus module

	
class plsa.corpus.Corpus(corpus: Iterable[str], pipeline: plsa.pipeline.Pipeline)

	Bases: object

Processes raw document collections and provides numeric representations.

	Parameters

	
	corpus (iterable of str) – An iterable over documents given as a single string each.

	pipeline (Pipeline) – The preprocessing pipeline.

See also

plsa.pipeline

	
classmethod from_csv(path: str, pipeline: plsa.pipeline.Pipeline, col: int = -1, encoding: str = 'latin_1', max_docs: int = 1000, **kwargs) → plsa.corpus.Corpus

	Instantiate a corpus from documents in a column of a CSV file.

	Parameters

	
	path (str) – Full path (incl. file name) to a CSV file with one column
containing documents.

	pipeline – The preprocessing pipeline.

	col (int) – Which column contains the documents. Numbering starts with 0 for
the first column. Negative numbers count back from the last
column (e.g., -1 for last, -2 just before the last, etc.).

	encoding (str) – A valid python encoding used to read the documents.

	max_docs (int) – The maximum number of documents to read from file.

	**kwargs – Keyword arguments are passed on to Python’s own csv.reader
function.

	Raises

	StopIteration – If you do not have at least two lines in your CSV file.

Notes

If you set a col to a value outside the range present in the CSV
file, it will be silently reset to the first or last column, depending
on which side you exceed the permitted range.

A list of available encodings can be found at
https://docs.python.org/3/library/codecs.html

Formatting parameters for the Python’s csv.reader can be found at
https://docs.python.org/3/library/csv.html#csv-fmt-params

	
classmethod from_xml(directory: str, pipeline: plsa.pipeline.Pipeline, tag: str = 'post', encoding: str = 'latin_1', max_files: int = 100) → plsa.corpus.Corpus

	Instantiate a corpus from elements of XML files in a directory.

	Parameters

	
	directory (str) – Path to the directory with the XML files.

	pipeline (Pipeline) – The preprocessing pipeline.

	tag – The XML tag that opens (<…>) and closes (</…>) the elements
containing documents.

	encoding – A valid python encoding used to read the documents.

	max_files – The maximum number of XML files to read.

Notes

A list of available encodings can be found at
https://docs.python.org/3/library/codecs.html

	
get_doc(tf_idf: bool) → numpy.ndarray

	The marginal probability that any word comes from a given document.

This probability p(d) is obtained by summing the joint document-
word probability p(d, w) over all words.

	Parameters

	tf_idf (bool) – Whether to marginalize the term-frequency inverse-document-frequency
or just the term-frequency matrix.

	Returns

	The document probability p(d).

	Return type

	ndarray

	
get_doc_given_word(tf_idf: bool) → numpy.ndarray

	The conditional probability of a particular word in a given document.

This probability p(d|w) is obtained by dividing the joint document-
word probability p(d, w) by the marginal word probability p(w).

	Parameters

	tf_idf (bool) – Whether to base the conditional probability on the term-frequency
inverse-document-frequency or just the term-frequency matrix.

	Returns

	The conditional word probability p(d|w).

	Return type

	ndarray

	
get_doc_word(tf_idf: bool) → numpy.ndarray

	The normalized document-word counts matrix.

Also referred to as the term-frequency matrix. Because words (or
terms) that occur in the majority of documents are the least helpful
in discriminating types of documents, each column of this matrix can be
multiplied by the logarithm of the total number of documents divided
by the number of documents containing the given word. The result is
then referred to as the term-frequency inverse-document-frequency
or TF-IDF matrix.

Either way, the returned matrix is always normalized such that it
can be interpreted as the joint document-word probability p(d, w).

	Parameters

	tf_idf (bool) – Whether to return the term-frequency inverse-document-frequency
or just the term-frequency matrix.

	Returns

	The normalized document (rows) - word (columns) matrix, either
as pure counts (if tf_idf = False) or weighted by the
inverse document frequency (if tf_idf is False).

	Return type

	ndarray

	
get_word(tf_idf: bool) → numpy.ndarray

	The marginal probability of a particular word.

This probability p(w) is obtained by summing the joint document-
word probability p(d, w) over all documents.

	Parameters

	tf_idf (bool) – Whether to marginalize the term-frequency inverse-document-frequency
or just the term-frequency matrix.

	Returns

	The word probability p(w).

	Return type

	ndarray

	
idf

	Logarithm of inverse fraction of documents each word occurs in.

	
index

	Mapping from actual word to numeric word index.

	
n_docs

	The number of non-empty documents.

	
n_occurrences

	Total number of times any word occurred in any document.

	
n_words

	The number of unique words retained after preprocessing.

	
pipeline

	The pipeline of preprocessors for each document.

	
raw

	The raw documents as they were read from the source.

	
vocabulary

	Mapping from numeric word index to actual word.

plsa.algorithms package

Submodules

	plsa.algorithms.plsa module

	plsa.algorithms.conditional_plsa module

	plsa.algorithms.result module

plsa.algorithms.plsa module

	
class plsa.algorithms.plsa.PLSA(corpus: plsa.corpus.Corpus, n_topics: int, tf_idf: bool = True)

	Implements probabilistic latent semantic analysis (PLSA).

At its core lies the assumption that the normalized document-word
(or term-frequency) matrix p(d, w), weighted with the inverse document
frequency or not, can be factorized as:

\[p(d, w)\approx\sum_t \tilde{p}(d|t)\tilde{p}(w|t)\tilde{p}(t)\]

	Parameters

	
	corpus (Corpus) – The corpus of preprocessed and numerically represented documents.

	n_topics (int) – The number of latent topics to identify.

	tf_idf (bool) – Whether to use the term-frequency inverse-document-frequency
or just the term-frequency matrix as joint probability p(d, w) of
documents and words.

	Raises

	ValueError – If the number of topics is < 2 or the number of both, words and
documents, in the corpus isn’t greater than the number of topics.

Notes

The implementation follows algorithm 15.2 in Barber’s book 1 to the
letter. What is not said there is that, in order to update the conditional
probability p(t|d, w) of a certain topic given a certain word in
a certain document, one first needs to find the joint probability of
all random variables as

\[\tilde{p}(t, d, w) = \tilde{p}(d|t)\tilde{p}(w|t)\tilde{p}(t)\]

and then divide by the marginal \(\tilde{p}(d, w)\).

References

	1

	“Bayesian Reasoning and Machine Learning”, David Barber (Cambridge
Press, 2012).

	
best_of(n_runs: int = 3, **kwargs) → plsa.algorithms.result.PlsaResult

	Finds the best PLSA model among the specified number of runs.

As with any iterative algorithm, also the probabilities in PSLA need
to be (randomly) initialized prior to the first iteration step.
Therefore, calling the fit method of two different instances
operating on the same corpus with the same number of topics
potentially leads to (slightly) different results, corresponding to
different local minima of the Kullback-Leibler divergence between
the true document-word probability and its approximate factorization.
To mitigate this effect, perform multiple runs and pick the best model.

	Parameters

	
	n_runs (int, optional) – Number of runs to pick the best model of. Defaults to 3.

	**kwargs – Keyword only arguments are passed on to the fit method.

	Returns

	Container class for the best result.

	Return type

	PlsaResult

	
fit(eps: float = 1e-05, max_iter: int = 200, warmup: int = 5) → plsa.algorithms.result.PlsaResult

	Run EM-style training to find latent topics in documents.

Expectation-maximization (EM) iterates until either the maximum number
of iterations is reached or if relative changes of the Kullback-
Leibler divergence between the actual document-word probability
and its approximate fall below a certain threshold, whichever
occurs first.

Since all quantities are update in-place, calling the fit method
again after a successful run (possibly with changed convergence
criteria) will continue to add more iterations on top of the status
quo rather than starting all over again from scratch.

Because a few EM iterations are needed to get things going, you can
specify an initial warm-up period, during which progress in the
Kullback-Leibler divergence is not tracked, and which does not count
towards the maximum number of iterations.

	Parameters

	
	eps (float, optional) – The convergence cutoff for relative changes in the Kullback-
Leibler divergence between the actual document-word probability
and its approximate. Defaults to 1e-5.

	max_iter (int, optional) – The maximum number of iterations to perform. Defaults to 200.

	warmup (int, optional) – The number of iterations to perform before changes in the
Kullback-Leibler divergence are tracked for convergence.

	Returns

	Container class for the results of the latent semantic analysis.

	Return type

	PlsaResult

	
n_topics

	The number of topics to find.

	
tf_idf

	Use inverse document frequency to weigh the document-word counts?

plsa.algorithms.conditional_plsa module

	
class plsa.algorithms.conditional_plsa.ConditionalPLSA(corpus: plsa.corpus.Corpus, n_topics: int, tf_idf: bool = True)

	Implements conditional probabilistic latent semantic analysis (PLSA).

Given that the normalized document-word (or term-frequency) matrix
p(d, w), weighted with the inverse document frequency or not, can
always be written as,

\[p(d, w) = p(d|w)p(w)\]

the core of conditional PLSA is the assumption that the conditional
p(d|w) can be factorized as:

\[p(d|w) \approx \sum_t \tilde{p}(d|t)\tilde{p}(t|w)\]

	Parameters

	
	corpus (Corpus) – The corpus of preprocessed and numerically represented documents.

	n_topics (int) – The number of latent topics to identify.

	tf_idf (bool) – Whether to use the term-frequency inverse-document-frequency
or just the term-frequency matrix as joint probability p(d, w) of
documents and words.

	Raises

	ValueError – If the number of topics is < 2 or the number of both, words and
documents, in the corpus isn’t greater than the number of topics.

Notes

Importantly, the present implementation does not follow algorithm 15.3
in Barber’s book 1. The update equations there appear non-sensical.
Following through the derivation that gives (non-conditional) PLSA, one
arrives at the following updates:

\[\begin{split}\tilde{p}(d|t) &= \sum_w p(d, w)q(t|d, w) \\
\tilde{p}(t|w) &= \sum_d p(d, w)q(t|d, w) \\
\tilde{p}(t, d, w) &= p(w)\sum_t\tilde{p}(d|t)\tilde{p}(t|w) \\
q(t| d, w) &= \tilde{p}(t, d, w) / \tilde{p}(d, w)\end{split}\]

References

	1

	“Bayesian Reasoning and Machine Learning”, David Barber (Cambridge
Press, 2012).

	
best_of(n_runs: int = 3, **kwargs) → plsa.algorithms.result.PlsaResult

	Finds the best PLSA model among the specified number of runs.

As with any iterative algorithm, also the probabilities in PSLA need
to be (randomly) initialized prior to the first iteration step.
Therefore, calling the fit method of two different instances
operating on the same corpus with the same number of topics
potentially leads to (slightly) different results, corresponding to
different local minima of the Kullback-Leibler divergence between
the true document-word probability and its approximate factorization.
To mitigate this effect, perform multiple runs and pick the best model.

	Parameters

	
	n_runs (int, optional) – Number of runs to pick the best model of. Defaults to 3.

	**kwargs – Keyword only arguments are passed on to the fit method.

	Returns

	Container class for the best result.

	Return type

	PlsaResult

	
fit(eps: float = 1e-05, max_iter: int = 200, warmup: int = 5) → plsa.algorithms.result.PlsaResult

	Run EM-style training to find latent topics in documents.

Expectation-maximization (EM) iterates until either the maximum number
of iterations is reached or if relative changes of the Kullback-
Leibler divergence between the actual document-word probability
and its approximate fall below a certain threshold, whichever
occurs first.

Since all quantities are update in-place, calling the fit method
again after a successful run (possibly with changed convergence
criteria) will continue to add more iterations on top of the status
quo rather than starting all over again from scratch.

Because a few EM iterations are needed to get things going, you can
specify an initial warm-up period, during which progress in the
Kullback-Leibler divergence is not tracked, and which does not count
towards the maximum number of iterations.

	Parameters

	
	eps (float, optional) – The convergence cutoff for relative changes in the Kullback-
Leibler divergence between the actual document-word probability
and its approximate. Defaults to 1e-5.

	max_iter (int, optional) – The maximum number of iterations to perform. Defaults to 200.

	warmup (int, optional) – The number of iterations to perform before changes in the
Kullback-Leibler divergence are tracked for convergence.

	Returns

	Container class for the results of the latent semantic analysis.

	Return type

	PlsaResult

	
n_topics

	The number of topics to find.

	
tf_idf

	Use inverse document frequency to weigh the document-word counts?

plsa.algorithms.result module

	
class plsa.algorithms.result.PlsaResult(topic_given_doc: numpy.ndarray, word_given_topic: numpy.ndarray, topic_given_word: numpy.ndarray, topic: numpy.ndarray, kl_divergences: List[float], corpus: plsa.corpus.Corpus, tf_idf: bool)

	Bases: object

Container for the results generated by a (conditional) PLSA run.

	Parameters

	
	topic_given_doc (ndarray) – The conditional probability p(t|d) as
\(n_{topics}\times n_{docs}\) array.

	word_given_topic (ndarray) – The conditional probability p(w|t) as
\(n_{words}\times n_{topics}\) array.

	topic_given_word (ndarray) – The conditional probability p(t|w) as
\(n_{topics}\times n_{words}\) array.

	topic (ndarray) – The marginal probability p(w).

	kl_divergences (list of float) – The Kullback-Leibler divergences between the original document-word
probability p(d, w) and its approximate for each iteration.

	corpus (Corpus) – The original corpus the PLSA model was trained on.

	tf_idf (bool) – Whether to weigh the document.word matrix with the inverse document
frequencies or not.

	
convergence

	The convergence of the Kullback-Leibler divergence.

	
kl_divergence

	KL-divergence of approximate and true document-word probability.

	
n_topics

	The number of latent topics identified.

	
predict(doc: str) → Tuple[numpy.ndarray, int, Tuple[str, ...]]

	Predict the relative importance of latent topics in a new document.

	Parameters

	doc (str) – A new document given as a single string.

	Returns

	
	ndarray – A 1-D array with the relative importance of latent topics.

	int – The number of words in the new document that were not present in
the corpus the PLSA model was trained on.

	tuple of str – Those words in the new document that were not present in the
corpus the PLSA model was trained on.

	Raises

	ValueError – If the document to predict on is an empty string, if there are
no words left after preprocessing the document, or if there are
no known words in the document.

	
tf_idf

	Used inverse document frequency to weigh the document-word counts?

	
topic

	The relative importance of latent topics.

	
topic_given_doc

	The relative importance of latent topics in each document.

Dimensions are \(n_{docs} \times n_{topics}\).

	
word_given_topic

	The words in each latent topic and their relative importance.

Results are presented as a tuple of 2-tuples (word, word importance).

plsa.visualize module

	
class plsa.visualize.Visualize(result: plsa.algorithms.result.PlsaResult)

	Bases: object

Visualize the results of probabilistic latent semantic analysis.

	Parameters

	result (PlsaResult) – The results object returned by the fit method of a PLSA
model object.

	
convergence(axis: matplotlib.axes._subplots.AxesSubplot) → List[matplotlib.lines.Line2D]

	Plot the convergence of the PLSA run.

The quantity to be minimized is the Kullback-Leibler divergence
between the original document-word matrix and its approximation
given by the (conditional) PLSA factorization.

	Parameters

	axis (Subplot) – The matplotlib axis to plot into.

	Returns

	The line object plotted into the given axis.

	Return type

	list of Line2D

	
prediction(doc: str, axis: matplotlib.axes._subplots.AxesSubplot) → matplotlib.container.BarContainer

	Plot the predicted relative weights of topics in a new document.

	Parameters

	
	doc (str) – A new document given as a single string.

	axis (Subplot) – The matplotlib axis to plot into.

	Returns

	The container for the bars plotted into the given axis.

	Return type

	BarContainer

	
topics(axis: matplotlib.axes._subplots.AxesSubplot) → matplotlib.container.BarContainer

	Plot the relative importance of the individual topics.

	Parameters

	axis (Subplot) – The matplotlib axis to plot into.

	Returns

	The container for the bars plotted into the given axis.

	Return type

	BarContainer

	
topics_in_doc(i_doc: int, axis: matplotlib.axes._subplots.AxesSubplot) → matplotlib.container.BarContainer

	Plot the relative weights of topics in a given document.

	Parameters

	
	i_doc (int) – Index of the document to plot. Numbering starts at 0.

	axis (Subplot) – The matplotlib axis to plot into.

	Returns

	The container for the bars plotted into the given axis.

	Return type

	BarContainer

	
wordclouds(figure: matplotlib.figure.Figure) → List[matplotlib.image.AxesImage]

	Plot the relative importance of words in all topics.

	Parameters

	figure (Figure) – An empty matplotlib figure to plot into.

	Returns

	List of images with the created word clouds.

	Return type

	list of AxisImage

	
words_in_topic(i_topic: int, axis: matplotlib.axes._subplots.AxesSubplot) → matplotlib.image.AxesImage

	Plot the relative importance of words in a given topic.

	Parameters

	
	i_topic (int) – Index of the topic to plot. Numbering starts at 0.

	axis (Subplot) – The matplotlib axis to plot into.

	Returns

	The image with the produced word cloud.

	Return type

	AxesImage

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 plsa	

 	
 	
 plsa.algorithms.conditional_plsa	

 	
 	
 plsa.algorithms.plsa	

 	
 	
 plsa.algorithms.result	

 	
 	
 plsa.corpus	

 	
 	
 plsa.pipeline	

 	
 	
 plsa.preprocessors	

 	
 	
 plsa.visualize	

Index

 B
 | C
 | F
 | G
 | I
 | K
 | L
 | N
 | P
 | R
 | T
 | V
 | W

B

 	
 	best_of() (plsa.algorithms.conditional_plsa.ConditionalPLSA method)

 	(plsa.algorithms.plsa.PLSA method)

C

 	
 	ConditionalPLSA (class in plsa.algorithms.conditional_plsa)

 	convergence (plsa.algorithms.result.PlsaResult attribute)

 	
 	convergence() (plsa.visualize.Visualize method)

 	Corpus (class in plsa.corpus)

F

 	
 	fit() (plsa.algorithms.conditional_plsa.ConditionalPLSA method)

 	(plsa.algorithms.plsa.PLSA method)

 	
 	from_csv() (plsa.corpus.Corpus class method)

 	from_xml() (plsa.corpus.Corpus class method)

G

 	
 	get_doc() (plsa.corpus.Corpus method)

 	get_doc_given_word() (plsa.corpus.Corpus method)

 	
 	get_doc_word() (plsa.corpus.Corpus method)

 	get_word() (plsa.corpus.Corpus method)

I

 	
 	idf (plsa.corpus.Corpus attribute)

 	
 	index (plsa.corpus.Corpus attribute)

K

 	
 	kl_divergence (plsa.algorithms.result.PlsaResult attribute)

L

 	
 	LemmatizeWords (class in plsa.preprocessors)

N

 	
 	n_docs (plsa.corpus.Corpus attribute)

 	n_occurrences (plsa.corpus.Corpus attribute)

 	n_topics (plsa.algorithms.conditional_plsa.ConditionalPLSA attribute)

 	(plsa.algorithms.plsa.PLSA attribute)

 	(plsa.algorithms.result.PlsaResult attribute)

 	
 	n_words (plsa.corpus.Corpus attribute)

P

 	
 	Pipeline (class in plsa.pipeline)

 	pipeline (plsa.corpus.Corpus attribute)

 	PLSA (class in plsa.algorithms.plsa)

 	plsa.algorithms.conditional_plsa (module)

 	plsa.algorithms.plsa (module)

 	plsa.algorithms.result (module)

 	plsa.corpus (module)

 	
 	plsa.pipeline (module)

 	plsa.preprocessors (module)

 	plsa.visualize (module)

 	PlsaResult (class in plsa.algorithms.result)

 	predict() (plsa.algorithms.result.PlsaResult method)

 	prediction() (plsa.visualize.Visualize method)

 	process() (plsa.pipeline.Pipeline method)

R

 	
 	raw (plsa.corpus.Corpus attribute)

 	remove_non_ascii() (in module plsa.preprocessors)

 	remove_numbers() (in module plsa.preprocessors)

 	
 	remove_punctuation() (in module plsa.preprocessors)

 	remove_short_words() (in module plsa.preprocessors)

 	remove_tags() (in module plsa.preprocessors)

 	RemoveStopwords (class in plsa.preprocessors)

T

 	
 	tf_idf (plsa.algorithms.conditional_plsa.ConditionalPLSA attribute)

 	(plsa.algorithms.plsa.PLSA attribute)

 	(plsa.algorithms.result.PlsaResult attribute)

 	to_lower() (in module plsa.preprocessors)

 	tokenize() (in module plsa.preprocessors)

 	
 	topic (plsa.algorithms.result.PlsaResult attribute)

 	topic_given_doc (plsa.algorithms.result.PlsaResult attribute)

 	topics() (plsa.visualize.Visualize method)

 	topics_in_doc() (plsa.visualize.Visualize method)

 	types (plsa.preprocessors.LemmatizeWords attribute)

V

 	
 	Visualize (class in plsa.visualize)

 	
 	vocabulary (plsa.corpus.Corpus attribute)

W

 	
 	word_given_topic (plsa.algorithms.result.PlsaResult attribute)

 	wordclouds() (plsa.visualize.Visualize method)

 	
 	words (plsa.preprocessors.RemoveStopwords attribute)

 	words_in_topic() (plsa.visualize.Visualize method)

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to PLSA’s documentation!

 		
 plsa.preprocessors module

 		
 plsa.pipeline module

 		
 plsa.corpus module

 		
 plsa.algorithms package

 		
 Submodules

 		
 plsa.algorithms.plsa module

 		
 plsa.algorithms.conditional_plsa module

 		
 plsa.algorithms.result module

 		
 plsa.visualize module

_static/up-pressed.png

_static/up.png

_static/plus.png

